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Intro

Dispersive approaches

v

model independent
unambiguous definition of the various contributions

makes a data-driven evaluation possible
(in principle)

if data not available: use theoretical calculations of
subamplitudes, short-distance constraints etc.

First a’[’[emp’[S: GC, Hoferichter, Procura, Stoffer (14)

Pauk, Vanderhaeghen (14)

similar philosophy, with a different implementation:
SChWinger sum rule Hagelstein, Pascalutsa (17)
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The HLbL tensor
HLbL tensor:

e = 2 [ [ay [ oz emitearras=a) o T (G () (0)) 0

GB=Kk=q+q@+aqg k=0

General Lorentz-invariant decomposition:

Mo — g,uug)\al—ﬂ_'_gu)\gual—IZ_i_guagV)\nS_i_Z ql/fq;’qli‘qfﬂ;}kl—i—. ..
ij.k,l

consists of 138 scalar functions {N', M2, ...}, butin d = 4 only
136 are Iinearly independent Eichmann et al. (14)

Constraints due to gauge invariance? (see aiso Eichmann, Fischer, Heupel (2015))

= Apply the Bardeen-Tung (68) method-+Tarrach (75) addition
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Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to M*** one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)

> 43 basis tensors (BT) in d = 4: 41=no. of helicity amplitudes
» 11 additional ones (T) to guarantee basis completeness everywhere
» of these 54 only 7 are distinct structures
| 2

all remaining 47 can be obtained by crossing
transformations of these 7: manifest crossing symmetry

» the dynamical calculation needed to fully determine the
LbL tensor concerns these 7 scalar amplitudes
54
I—IH,VAU — Z 7-[“1/)\0"—"

i=1
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Master Formula

aHLbL:_ee/ d'an d'q 312 Ti(ar @ PG, G, —G1 — G)
g (2m)* (2m)* 92q5(aqr + q2)?[(p + q1)% — m2][(p — q2)? — m2]

» T;: known kernel functions
» [1;: linear combinations of the I,

» the l1; are amenable to a dispersive
treatment: their imaginary parts are related
to measurable subprocesses

» 5 integrals can be performed with
Gegenbauer polynomial techniques

GC, Hoferichter, Procura, Stoffer (2015)
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Master Formula

After performing the 5 integrations:

gL — /dQ1 /d02 /dT\/ﬁZT (Qr, Qo, 7)Ai(Q1, Qo, 7)

482

where Q/ are the Wick-rotated four-momenta and  the
four-dimensional angle between Euclidean momenta:

Q- Qo = |Qi]|Q|T

The integration variables Q; := |Q], Qo := | Q|-

GC, Hoferichter, Procura, Stoffer (2015)
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Setting up the dispersive calculation

The HLbL tensor is split as follows:

-pol - =
Muse = M0y + T+ Mno + -+

12X

Last diagrams = all partial waves < scalars and tensors etc.

3m states are in ... = axial vector resonances
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Pion-pole contribution

» The pion transition form factor completely fixes this

contribution Knecht-Nyffeler (01)
2 2 2
I=|1 _ FTrU'y*'y*(q1 ) Q2)F7r°'y**,* (q30)
Q§ - M72T0

» Both transition form factors (TFF) must be included:
[dropping one bc short-distance not correct Melnikov-Vainshtein (04) |

» data on singly-virtual TFF available CELLO, GLEO, BaBar, Belle, BESIII

» several calculations of the transition form factors in the

literature Masjuan & Sanchez-Puertas (17), Eichmann et al. (17), Guevara et al. (18)
> dispersive approach works here too Hoferichter et al. (18)

» quantity where lattice calculations can have a significant
impaCt Gerardin, Meyer, Nyffeler (16,19)
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PS-pole contributions

B. Kubis and P. Sanchez Puertas

Philosophy adopted in the section:
The calculations must be model-independent and data-driven
to as large an extent as possible (...)

Three criteria must be fulfilled:

1. TFF normalization given by the real-photon decay widths,
and high-energy constraints must be fulfilled;

2. at least the space-like experimental data for the
singly-virtual TFF must be reproduced;

3. systematic uncertainties must be assessed with a
reasonable procedure.
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Results above the bar

» Dispersive calculation of the pion TFF Hoferichter et al. (18)

g’ =63.0"27 x 107

> Padé-CanterbU ry apprOXimantS Masjuan & Sanchez-Puertas (17)
a" =63.6(2.7) x 10"
m . .
» Lattice Gérardin, Meyer, Nyffeler (19)

70 —11
a”’ = 62.3(2.3) x 10
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Results above the bar
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Results above the bar

PS-pole 27 Higher hadrons SDC Summary
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n- and r’-pole contribution

» Dispersive calculation not yet available — talk by S. Holz
(n-n" mixing, different isospin structure etc.)

» Less data (BaBar)

» Canterbury approach:

al = 16.3(1.0)4(0.5) a5, , (0.9)sys x 107" - 16.3(1.4) x 10~
gl = 14.5(0.7)5u(0.4)an, ,(1.7)5ys x 1071 = 14.5(1.9) x 10~
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n- and r’-pole contribution

Fopr p+(-QF,-Q3)x1073 (GeV™)
H—e—H

(6.5,6.5) (16.9,16.9) (14.8,4.3) (38.1,15.0) (45.6,45.6)
(Q2,Q3) (GeV?)

Data points: BaBar. Blue band: Canterbury representation.
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n- and r’-pole contribution
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Data points: BaBar. Blue band: Canterbury representation.
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PS-poles: conclusion

Dispersive (7°) + Canterbury (1, '):
RN 4.0 11
ar = 93,8740 x 10
Canterbury:
gt = 94.3(5.3) x 10711

Outlook:

Dispersive evaluation of the n, n’ contributions will give two fully
independent evaluations = better control over systematics
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2m-contributions
|. Danilkin & P. Stoffer

This can be split in several components
> 71-box
» 27 S-wave below 1 GeV
» 21 S-wave above 1 GeV
» 27 D-wave
» 27 yet higher waves
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Pion-box contribution

%-pole FSQED | f
I_IMV)\U = I_IZV)’\)J + 1 = + n;u/)\a + -

12X
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Pion-box contribution

The only ingredient needed for the pion-box contribution is the
vector form factor

L 1 1 1—x
7o = PR B @Bgs [ & [ ayiry)

where

8xy(1 —2x)(1 —2y)

/ =
1x.) Aq23A03

and analogous expressions for /4 717,39 54 and

Aoz = M2 — xyqZ — x(1 —x — y)g5 — y(1 — x — y)45,
Doz = M2 — x(1 - X)g5 — y(1 - y)a5
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Pion-box contribution

. NA7 *
. JLab ©
I | =
[ 10

I 0 0.2 0.4 0.6 0.8 1

s [GeVz]
!
08 06 04 02 0
s [Ge\/z]

Uncertainties are negligibly small:

a;®P = —15.9(2) - 107"
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Pion-box contribution

Contribution BPaP(96) HKS(96) KnN(02) MV(04) BP(07) PdRV/(09) N/JN(09)
w0 n,n’ 85+13 82.7+6.4 83+12 114£10 — 114£13 99+16
7, K loops —19£13 —4.51+8.1 — - — —19£19 —19+£13

" "+ subl. in Ng — — - 0+10 — - —
axial vectors 2.5+1.0 1.7£1.7 - 22+ 5 - 15+10 2245
scalars —6.8+2.0 - - - - —7+£7 —7+2
quark loops 21£3 9.7+11.1 - — - 2.3 21+3
total 83+32 89.6+15.4 80+40 136+25 110+£40 105+26 116+39

Uncertainties are negligibly small:

gy = -15.9(2)- 107"
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First evaluation of S- wave 2r7-rescattering

Omnes solution for v*~* — w7 provides the following:

X XX

recursive  PWE, no LHC
Based on:

> taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour

» 77 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

» numerical solution of the v*~4* — 77 dispersion relation
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First evaluation of S- wave 2r7-rescattering

Omnes solution for v*~* — w7 provides the following:

X XX

recursive  PWE, no LHC
Based on:

> taking the pion pole as the only left-hand singularity
» = pion vector FF to describe the off-shell behaviour

» 77 phases obtained with the inverse amplitude method

[realistic only below 1 Gev: accounts for the f;(500) + unique and well defined extrapolation to co]

» numerical solution of the v*~4* — 77 dispersion relation

S-wave contributions : a:?:go'e LHC — _8(1) x 10~
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Two-pion contribution to (g — 2),, from HLbL

Two-pion contributions to HLbL:

pion box rescattering contribution

aszox + azz,:é)ole LHC _ _24(1) ) 10,11
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v*~v* — 7 contribution from other partial waves

» formulae get significantly more involved with several
subtleties in the calculation

» in particular sum rules which link different partial waves
must be satisfied by different resonances in the narrow
width apprOXimation Danilkin, Pascalutsa, Pauk, Vanderhaeghen (12,14,17)

» data and dispersive treatments available for on-shell
photons e.g. Dai & Pennington (14,16,17)

» dispersive treatment for the singly-virtual case and check
with forthcoming data is very important

— talks by Danilkin & Stoffer
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v~ () — 77 cross-section: data vs theory

Yy — mto~
T
400 L Born term
DV18 —
350 HS19 -
“‘I Belle
=300 |- Mark IT B
£, CELLO
’g 250 |- g
Yoo 1
B
8
© 150 H B
®
100 H R
50 H B
0 L L L
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v~ () — 77 cross-section: data vs theory

vy — m0x0
200 - DV18 — |
HS19 ---
Belle
Crystal Ball
= 150 B
=
)
S
¥ 100 ,
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v~ () — 77 cross-section: data vs theory

= atrT, QF =0 GeV?, Q3 = 0.5 GeV?
140 ; |
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v~ () — 77 cross-section: data vs theory

50

v =t Q3 =0 GeV2, Q3 = 0.5 GeV?

45 +
40
35

orr(] cosf] < 1.0) [nb]

DV18 Born 4
HS19 Born
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v~ () — 77 cross-section: data vs theory

vy = 7079 Q% = 0 GeV?, Q3 = 0.5 GeV?
70 ;

60 - HS19 -—

40 +

orr(|cosf| < 1.0) [nb]

——
o ~~. -

-~ -
v fat SRS g

0L L L L
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v~ () — 77 cross-section: data vs theory

Ay = 7070, Q2 = 0 GeV?2, Q% = 0.5 GeV?

20 T
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v~ () — 77 cross-section: data vs theory

Py =t QF = Q3 = 0.5 GeV?

50 \
,, DDV19 Born
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v~ () — 77 cross-section: data vs theory

Yt = atrT, Q? = Q3 =0.5 GeV?

6 T
DDV19 Born

5L I HS19 Born 4
= n DDV19 —
=S ] HS19 ---
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v~ () — 77 cross-section: data vs theory

Yyt =t Q2 = Q3 = 0.5 GeV?

80 |
70 . DDV19 Born
A HS19 Born
Y DDV19 —
00y HS19 ---
A\
\1
\

orr(]cosf| < 1.0) [nb]
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v~ () — 77 cross-section: data vs theory

Yy = wln%, QF = Q3 = 0.5 GeV?
25 T

DDV19 —
HS19 —--

20 -

15 | 1

orr(|cosf| < 1.0) [nb]
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v~ () — 77 cross-section: data vs theory

Tyt = w70, QF = Q3 = 0.5 GeV?
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v~ () — 77 cross-section: data vs theory
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Higher hadronic intermediate states
P. Stoffer & M. Vanderhaeghen

> Kaon—bOX: (based on a VMD description of Fg. VMD for Fyj gives 7r-box within 3%)
ai " =-0.50x 107"

» Higher scalars

azcalars =[-(3.1+0.8),—(0.9+0.2)] x 10~ " Pauketal.(14)

aes = [—(2.2157), —(1.0559)] x 107" Knechtetal.(18)
» Tensors (£(1270), £(1565), a»(1320), and a»(1700))
nsor. —11 s
ag"™"™ =0.9(0.1)x10 Danilkinetal.(16)
» Axial vectors ——» talks by Hoferichter, Kampf
ah[f, f{] = 6.4(2.0) x 107" Pauketal.(14)

azxials[a17f17 ] =7.6(2.7) x 10~ Jegerlehner(17)
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Short-distance constraints
J. Bijnens, M. Hoferichter
Two possible high-energy regimes for HLbL.:

A FE~E>qdh, bE~gG~a

» Constraints in regime a) have been discussed by

Melnikov & Vainshtein (04)

Q12 Q>>Q3 2NC 2 a 3 1
ni(ef. ¢5.05) " — 2q2 ZC 67727‘72‘7%

to be compared with
FWO'Y*’Y*(q12’ qg)F 0 *,\/*(qg,o)
Q3 MTzro
» Constraints in regime b) can be derived from the plain
quark |00p — talks by Bijnens & Hoferichter

nﬂ pde(% ) QQ7 CI3)
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Short-distance constraints

J. Bijnens, M. Hoferichter

20

a, x 101

Qumin [GeV]
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Short-distance constraints
J. Bijnens, M. Hoferichter
Two possible high-energy regimes for HLbL.:

A FE~E>qdh, bE~gG~a

» Constraints in regime a) have been discussed by
Melnikov & Vainshtein (04)
» Constraints in regime b) can be derived from the plain
quark |00p — talks by Bijnens & Hoferichter

» In the dispersive approach, the sum of the contributions
discussed so far does not satisfy these constraints

» = add more (— infinitely many!) hadronic states to satisfy
the SDC ——» talks by Hoferichter & Laub
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Summary of HLbL (as of May '19, very preliminary!)

Contributions to 10" - -

> Pseudoscalar poles =93.8732
» pion box  (kaon box ~ —0.5) =—-15.9(2)
» S-wave 77 rescattering =—-8(1)
» scalars and tensors with Mg > 1 GeV ~ —2(3)
> axial vectors ~ 8(3)
» short-distance contribution ~10(10)
Central value: 85 + XX
Uncertainties added in quadrature: XX =12

Uncertainties added linearly: XX =21
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Improvements obtained with the dispersive approach

| Contribution | PdRV(09) [ NAN(09) | J(17) |  White Paper |
70, n, 1 -poles 114 £13 99 + 16 95.45 4+ 12.40 93.8+4.0
m, K-loop/box -194+19 -19+13 —-20+5 —-16.44+0.2
S-wave — — — -8+ 1
scalars —-7+7 —-7+x2 —-5.98 +1.20 _o43
tensors — — 1.1+£0.1
axials 15+10 22 +5 7.55+2.71 8+8
g-loops / SD 23 21+3 223+5.0 10 £10
total 105 + 26 116 + 39 100.4 +28.2 85+ XX

HLbL in units of 10~ .
PdRV = Prades, de Rafael, Vainshtein (“Glasgow consensus”); N = Nyffeler;

J = Jegerlehner
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Exp. inputs and Monte Carlo studies
F. Curciarello, H. Czyz, E. Perez del Rio, C. Redmer

m,n,n transition form factors (TFFs)

» Existing experimental data on single-virtual TFFs:
spacelike regime from ~*~ collisions;
timelike reg. from radiative production in e* e~ annihil.

» Single Dalitz decays of pseudoscalars (slope of TFFs)
Double Dalitz decay: no momentum dependence yet

» Very recently: first results from BaBar for double-virtual »’
TFF for 7 intervals of rather large (Q2, Q3)

» TFFs also enter in Dalitz decays of vector mesons:
w— moutu~ (nete ) or ¢ — ete nO(eten)

» Update from BESIII: — talk by Ch. Redmer
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7%, n,n' TFFs in spacelike region from ~y-collisions

os] & BESHI (preliminary) ] » Error bars indicate total
S e = ] uncertainties.
E 4 CELLO {“
= oaf ] » For 70 (n,n’)-pole
g e ] contributions to HLbL,
© double-virtual low-energy
0.1 4 .
° region Q? < 1 (4) GeV? most
0051 1 relevant.
0.1 1‘ 1‘0
Q’ [GeV’]
0.25 T T 0.35 ] CELLO T T
14 CLEO n'=m*my
031 v CLEOm-mmn(-yy 4
4 CLEO n'-rm*mn(-m'mn®)
0.2 4 8 CLEO n'=mr*m(-n’n’n’)
— —_ i % CLEO n:—'nsnzn(—vx]n . |
% % % gla‘s;)rn —n’n’n(-nn’n’
o I '} + 1 ) + 13
15 3 02f |
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Exp. input

7% and n TFFs in timelike region in e"e~ annihilation
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Exp. input

7m0 — vy and v*)y — 77 (and other PS pairs)

» 70 — 4~ decay width (PrimEx-Il)
Related to normalization of 7. .(0,0). Combined
PrimEx-1 and Il result presented at PhiPsi 2019:
F(7° = y) = 7.80240.521,, £0.105y. eV = 7.802+0.117 eV

1.5% accuracy, tension w/ ChPT at (N)NLO ? - taik by A. casparian

» )y — 77 and other PS pairs

Old data with real photons by DESY and SLAC, more
precise recently by Belle, also for the first time
vy — w070 KOK?, but at rather large Q% > 3.0 GeV2.

Update from BESIII: —— talk by Ch. Redmer



Exp. input

Other relevant measurements and a wishlist
» Plans to measure P — vy and TFFs at low momenta at KLOE-2 and
JLab (Primakoff program).
» BESIII: Feasibility studies for v*v* — 7%, 7,7’ in region
0.5GeV2 < Q?, Q% < 2.0 GeV2.
> More processes (see wishlist below) should be measured at various
experiments as input for DR approach to TFFs and for pion-loop.

issue helpful experimental information
pseudoscalar TFF 4" = 70, n,n at arbitrary virtualities
pion loops v*~v* — 7 at arbitrary virtualities, partial waves

dispersive analysis of 7° TFF | high accuracy Dalitz plot w — 77~ #°

ete” st a0

YT — T

w— 701/~ and ¢ — =°/T/~ as cross check
dispersive analysis of n TFF S

ete™ —» nrta™

n — (O S

n - ntr ete”

axial and tensor contributions | v*~* — 3 or 4=«

missing states inclusive v*)y* — hadrons at 1-3 GeV

Dedicated discussion session on wishlist led by Andrzej Kupsc




Exp. input

Radiative corrections and MC event generators

» Strong tension between spacelike 7° TFF data of BaBar at
Q? > 4 GeV? and other exps. (CELLO, CLEO, Belle)

» Recent experiments used MC event generators that
include radiative corrections in structure function method.
Belle: TREPSPST Uehara et al. (12, (13)
BaBar: GGRESRC Druzhinin et al. (14)

» Event generator EKHARA (czy: etal 06, 11) recently upgraded
with exact QED corrections to ete™ — €€ P cayzandkisza(19)

» Large rad. corrs. (~ 20%) found with EKHARA for BaBar
sel. cuts, vs only ~ 1% in GGRESRC. Must be checked,
also for TFF at lower momenta, e.g. at BESIII. Full detector
simulation needed to judge final impact on TFF

— talk by Henryk Czyz on Wednesday



Conclusions

Conclusions
> a lot of progress has happened in the last five years in the
dispersive approach to HLbL
» this talk: status of this chapter as of the end of May 2019:
for some contributions there has been a significant

reduction in the theory uncertainties

» more work is needed for higher scalars, tensors and axial
vectors as well as for the SDC

» this workshop: progress since last May

» this Friday = where we will stand by end 2019
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